AIHub为大家整理了OpenAI Sora技术报告最后提到的参考论文合集,总共32篇。
如果你想了解Sora更多信息,点击下面访问:
- Unsupervised Learning of Video Representations using LSTMs
- Recurrent Environment Simulators
- World Models
- Generating Videos with Scene Dynamics
- MoCoGAN: Decomposing Motion and Content for Video Generation
- Adversarial Video Generation on Complex Datasets
- Generating Long Videos of Dynamic Scenes
- VideoGPT: Video Generation using VQ-VAE and Transformers
- NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion
- Imagen Video: High Definition Video Generation with Diffusion Models
- Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models
- Photorealistic Video Generation with Diffusion Models
- Attention Is All You Need
- Language Models are Few-Shot Learner
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
- ViViT: A Video Vision Transformer
- Masked Autoencoders Are Scalable Vision Learners
- Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution
- High-Resolution Image Synthesis with Latent Diffusion Models
- Auto-Encoding Variational Bayes
- Deep Unsupervised Learning using Nonequilibrium Thermodynamics
- Denoising Diffusion Probabilistic Models
- Improved Denoising Diffusion Probabilistic Models
- Diffusion Models Beat GANs on Image Synthesis
- Elucidating the Design Space of Diffusion-Based Generative Models
- Scalable Diffusion Models with Transformers
- openai/imagegpt-large :https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
- Zero-Shot Text-to-Image Generation
- Scaling Autoregressive Models for Content-Rich Text-to-Image Generation
- dataautogpt3: https://cdn.openai.com/papers/dall-e-3.pdf
- Hierarchical Text-Conditional Image Generation with CLIP Latents
- SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations
©版权声明:如无特殊说明,本站所有内容均为AIHub.cn原创发布和所有。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。否则,我站将依法保留追究相关法律责任的权利。